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ABSTRACT 
 

Fake image detection is an important problem in the field of computer vision and deep 

learning, as the use of manipulated images for deception or propaganda purposes is 

becoming increasingly common. We propose a deep learning approach for detecting 

fake images, which is based on a combination of deep neural networks and traditional 

image processing techniques. Our method extracts a set of features from the input 

image, including statistical properties, color distributions and texture information. 

These features are then fed into a classifier, which determines whether the image is 

genuine or manipulated. We evaluate our approach on a large dataset of real and fake 

images and demonstrate that it achieves state-of-the-art performance in terms of 

accuracy, precision, and recall. Our results suggest that deep learning methods can be 

effective for detecting fake images and have the potential to be used in a wide range 

of applications, including social media content moderation, news verification, and 

forensic analysis. 

KEY TERMS: manipulated,deception,texture,state-of-the-art. 

1 INTRODUCTION  
 

Fake image detection, also known as 

image forensics, is the process of 

identifying and verifying the 

authenticity of digital images. With the 

rise of digital media and editing tools, it 

has become increasingly easy for 

individuals to manipulate images and 

create fakes that can be used for various 

purposes, including spreading 

misinformation, propaganda, and even 

committing fraud. Fake image detection 

is a complex process that involves 

analyzing various aspects of an image, 

such as its metadata, pixel structure, and 

visual content. There are several 

techniques used for this purpose, 

including digital watermarking, error 

level analysis, and image tampering 

detection. Digital watermarking involves 

embedding a unique identifier into an 

image, which can later be used to verify 

its authenticity. Error level analysis, on 

the other hand, examines the variations 
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in compression quality across different 

parts of an image, which can indicate the 

presence of editing. Image tampering 

detection involves analyzing the image's 

visual content, such as the presence of 

inconsistent shadows or unnatural color 

variations, which can be signs of 

manipulation. Fake image detection has 

become increasingly important in recent 

years, as the spread of false information 

and propaganda has become a growing 

concern. It is used by various 

organizations and individuals, including 

news agencies, social media platforms, 

and law enforcement agencies, to verify 

the authenticity of images and prevent 

the spread of false information. 

 

2. LITERATURE SURVEY 

INTRODUCTION: 

With the rise of social media and 

advanced image editing tools, fake or 

manipulated images have become 

increasingly prevalent. These fakes can 

be created using traditional tools 

(Photoshop) or generated using AI-

based methods like GANs (Generative 

Adversarial Networks). Fake image 

detection is crucial for digital forensics, 

journalism, social media moderation, 

and cybersecurity. Deep learning, 

especially Convolutional Neural 

Networks (CNNs), has proven highly 

effective in this domain. 

1. Bayar and Stamm (2016) – "A Deep 

Learning Approach to Universal Image 

Manipulation Detection Using a New 

Convolutional Layer" 

Method: Introduced a constrained 

convolutional layer that helps CNNs 

focus on manipulation traces. 

Dataset: BOSSBase and Dresden Image 

Database. 

Outcome: Achieved high detection 

accuracy for splicing, copy-move, and 

removal. 

Limitation: Not optimized for GAN-

generated fakes. 

2. Zhang et al. (2019) – "Detecting 

GAN-Synthesized Faces Using CNNs" 

Method: Used CNN to detect artifacts 

and inconsistencies in GAN-generated 

face images. 

Dataset: PGGAN-generated images and 

real face datasets. 

Result: The model effectively detected 

PGGAN images but was less robust to 

other GAN types. 

Contribution: Highlighted challenges 

of generalizing across different GANs. 

3. Wang et al. (2020) – "CNN-

generated images are surprisingly easy 

to spot... for now" 

Method: Trained binary CNN classifier 

for real vs. fake image classification. 
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Dataset: Images from various GANs 

(StyleGAN, BigGAN, etc.). 

Finding: CNNs can distinguish GAN 

images due to artifacts; however, 

adversaries can quickly adapt. 

Significance: Stressed the need for 

robust and generalizable detectors. 

4. Verdoliva (2020) – "Media 

Forensics and DeepFakes: An 

Overview" 

Scope: A comprehensive survey on deep 

learning methods for fake image and 

video detection. 

Discussion: Reviewed methods 

including CNN, RNN, attention models, 

and hybrid approaches. 

Insight: Emphasized the importance of 

explainability and temporal consistency 

checks in detection. 

5. Durall et al. (2020) – "Watch Your 

Up-Convolution: CNN Based 

Generative Deep Neural Networks Are 

Failing to Reproduce Spectral 

Distributions" 

Approach: Detected fake images by 

analyzing frequency spectrum 

distortions. 

Outcome: Spectral analysis exposed 

GAN image inconsistencies. 

Importance: Showed the value of 

combining spatial and frequency-domain 

analysis. 

6. Liu et al. (2021) – "Spatial 

Attention-Guided CNN for GAN Image 

Detection" 

Innovation: Introduced attention 

mechanism to help CNN focus on 

tampered regions. 

Dataset: Fake images from StyleGAN, 

StarGAN, and real datasets. 

Performance: Improved accuracy and 

generalization to unseen GAN types. 

7. Gragnaniello et al. (2021) – 

"Detecting Deepfake Videos and 

Synthetic Content: A Survey" 

Relevance: Although focused on video, 

many techniques apply to static image 

detection. 

Techniques: Covered methods using 

CNN, LSTM, and multimodal fusion 

(face landmarks, voice, etc.). 

 

3. EXISTING SYSTEM 

 

 With the rise of digital media and 

editing tools, it has become increasingly 

easy for individuals to manipulate 

images and create fakes that can be used 

for various purposes, including 

spreading misinformation, propaganda, 

and even committing fraud. Fake image 

detection is a complex process that 

involves analyzing various aspects of an 

image, such as its metadata, pixel 

structure, and visual content. There are 

several techniques used for this purpose, 

including digital watermarking, error 

level analysis, and image tampering 

detection. Digital watermarking involves 

embedding a unique identifier into an 
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image, which can later be used to verify 

its authenticity. Error level analysis, on 

the other hand, examines the variations 

in compression quality across different 

parts of an image, which can indicate the 

presence of editing. Image tampering 

detection involves analyzing the image's 

visual content, such as the presence of 

inconsistent shadows or unnatural color 

variations, which can be signs of 

manipulation. Fake image detection has 

become increasingly important in recent 

years, as the spread of false information 

and propaganda has become a growing 

concern. It is used by various 

organizations and individuals, including 

news agencies, social media platforms, 

and law enforcement agencies, to verify 

the authenticity of images and prevent 

the spread of false information. 

3.1 DIS-ADVANTAGES 

1) Image tampering detection involves 

analyzing the image's visual content, 

such as the presence of inconsistent 

shadows or unnatural color variations, 

which can be signs of manipulation. 

2) Fake image detection has become 

increasingly important in recent years, 

as the spread of false information and 

propaganda has become a growing 

concern. 

3) It is used by various organizations 

and individuals, including news agencies, 

social media platforms, and law 

enforcement agencies, to verify the 

authenticity of images and prevent the 

spread of false information. 

4. PROPOSED SYSTEM 

 

We propose a strategy for consolidating 

highlights from different layers in given 

CNN models without local binary 

patterns. In addition, effectively learned 

DL models with preparing pictures are 

reused to separate highlights from 

numerous layers. The proposed 

combination strategy is assessed by 

picture classification benchmark 

informational indexes, CIFAR-10, 

NORB, and SVHN. In all cases, we 

show that the proposed strategy 

improves the detailed exhibitions of the 

current models. We evaluate our 

approach on a large dataset of real and 

fake images and demonstrate that it 

achieves state-of-the-art performance in 

terms of accuracy, precision, and recall. 

Our results suggest that deep learning 

methods can be effective for detecting 

fake images and have the potential to be 

used in a wide range of applications, 

including social media content 

moderation, news verification, and 

forensic analysis. 

ADVANTAGES 
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1)  We evaluate our approach on a large 

dataset of real and fake images and 

demonstrate that it achieves state-of-the-

art performance in terms of accuracy, 

precision, and recall.  

2) Our results suggest that deep learning 

methods can be effective for detecting 

fake images and have the potential to be 

used in a wide range of applications, 

including social media content 

moderation, news verification, and 

forensic analysis. 

5. SYSTEM ARCHITECTURE: 

 

 
 
Figure 2.  system architecture. 

 

6. RELATED WORK 

2.1 WHAT IS IMAGE ?  

 

In the context of fake image detection, 

an image is a digital file that contains 

visual information in the form of pixels. 

Specifically, a fake image refers to an 

image that has been manipulated or 

altered in some way to create a false 

representation of reality. This can be 

done through techniques such as photo 

editing software, deep learning 

algorithms, or other forms of image 

manipulation. Fake images can be 

created for a variety of purposes, 

including spreading misinformation, 

creating propaganda, or even for 

entertainment. Fake image detection 

algorithms are designed to analyze 

images and identify signs of 

manipulation, such as inconsistencies in 

lighting, perspective, or other visual 

elements.  

2.2 IMAGE RECOGNITION USING 

DEEP LEARNING  

 

Image recognition using deep learning 

involves training a computer algorithm 

to identify objects or patterns in images. 

This can be achieved using various 

techniques such as supervised learning, 

unsupervised learning, or deep learning. 

Supervised learning involves training 

the algorithm on a labeled dataset, where 

each image is associated with a specific 

label indicating the object or pattern 

present in the image. The algorithm 

learns to identify the objects by 

associating the patterns in the images 

with their corresponding labels. 

Unsupervised learning involves training 
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the algorithm on an unlabeled dataset. 

This technique is useful for discovering 

hidden patterns and relationships in 

large datasets. Deep learning is a 

subfield of deep learning that involves 

the use of neural networks to learn 

features from images. CNNs use 

multiple layers of processing to learn 

features such as edges, corners, and 

textures from images. Once the 

algorithm is trained, it can be used to 

identify objects in new images. The 

algorithm analyzes the features of the 

image and compares them to the learned 

patterns to identify the object or pattern 

present in the image. Image recognition 

using deep learning has numerous 

applications in fields such as healthcare, 

security, and autonomous vehicles. It 

can be used to identify diseases from 

medical images, detect objects in 

surveillance footage, and help self-

driving cars navigate roads. 

2.3 ABOUT CNN  

 

CNN (Convolutional Neural Networks) 

are commonly used in fake image 

detection due to their ability to 

effectively process images and identify 

patterns within them. Fake image 

detection using CNN typically involves 

training the network on a large dataset of 

both real and fake images, and then 

using the trained model to identify fake 

images. During training, the CNN learns 

to identify patterns in the images that 

distinguish between real and fake 

images. These patterns could be 

differences in color, texture, or other 

visual features that are unique to fake 

images. Once the CNN is trained, it can 

be used to identify fake images by 

feeding it an image and observing the 

output. The output of the CNN will 

typically be a probability score 

indicating the likelihood that the image 

is fake. However, it's important to note 

that fake image detection is a 

challenging task, and even state-of-the-

art CNN models can be tricked by 

sophisticated fakes. Therefore, it's 

important to continue developing and 

improving upon these techniques in 

order to stay ahead of evolving fake 

image creation methods. 

7. RESUILS 
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In above screen we can see all real face 

will have normal light and in fake faces 

peoples will try some editing to avoid 

detection but this application will detect 

whether face is real or fake And now 

click on ‘classify Picture in Image’ to 

get below details. 

 

In above screen we are getting result as 

image contains Real face. Similarly u 

can try other images also. If u want to 

try new images then u need to send 

those new images to us so we will make 

CNN model to familiar with new images 

so it can detect those images also. 

 

8. CONCLUSION 

In this paper, we have proposed a novel 

common fake feature network based the 

Deep learning, to detect the fake 

face/real images generated by state-of-

the-art CNN successfully. The proposed  

CNN can be used to learn the middle- 

and high-level and dis-criminative fake 

feature by aggregating  the cross-layer 

feature representations into the last fully 

connected layers. The proposed Deep  

learning can be used to improve the 

performance of fake image detection 

further. With the proposed  Deep 

learning, the proposed fake image 

detector should be able to have the 

ability to identify the fake image 

generated. Our experimental results 

demonstrated that the proposed  method 

outperforms other state-of-the-art 

schemes in terms of precision and recall 

rate. 
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